Twisted higher spin Dirac operators

نویسندگان

  • H. De Schepper
  • T. Raeymaekers
چکیده

In this paper, we define twisted higher spin Dirac operators and explain how these invariant differential operators can be used to define more general higher spin Dirac operators acting on functions f(x) on R which then take values in general half-integer representations for the spin group. Mathematics Subject Classification (2010). 30G35, 42B35.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Solutions of the Higher Spin Dirac Operators of Order Two

In this paper, we define twisted Rarita-Schwinger operators RTl1 and explain how these invariant differential operators can be used to determine polynomial null solutions of the higher spin Dirac operators Ql1,l2 .

متن کامل

On an inductive construction of higher spin Dirac operators

In this contribution, we introduce higher spin Dirac operators, i.e. a specific class of differential operators in Clifford analysis of several vector variables, motivated by equations from theoretical physics. In particular, the higher spin Dirac operator in three vector variables will be explicitly constructed, starting from a description of the so-called twisted Rarita-Schwinger operator.

متن کامل

Harmonic Spinors for Twisted Dirac Operators

We show that for a suitable class of “Dirac-like” operators there holds a Gluing Theorem for connected sums. More precisely, if M1 and M2 are closed Riemannian manifolds of dimension n ≥ 3 together with such operators, then the connected sum M1#M2 can be given a Riemannian metric such that the spectrum of its associated operator is close to the disjoint union of the spectra of the two original ...

متن کامل

Higher spin Dirac operators

In Clifford analysis, one studies spin-invariant differential operators on spaces of arbitrary dimension m. At the heart of the classical theory lies the well-known Dirac operator, which finds its origin in physics [5]: the Dirac equation describes the behaviour of electrons in the 4-dimensional spacetime. Our aim is to study generalizations of this operator, the so-called higher spin Dirac ope...

متن کامل

2 2 N ov 2 01 2 Projective Dirac operators , twisted K - theory , and local index formula ∗

We construct a canonical noncommutative spectral triple for every oriented closed Riemannian manifold, which represents the fundamental class in the twisted K-homology of the manifold. This so-called “projective spectral triple” is Morita equivalent to the well-known commutative spin spectral triple provided that the manifold is spin-c. We give an explicit local formula for the twisted Chern ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013